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The problem of radiative equilibrium in a cylinder surrounded by a medium with an

arbitrary temperature distribution is analyzed. An analytic solution is obtained for

an absorption coefficient depending linearly on optical depth. The solution is applied

to the problem of the temperature distribution in a photospheric column located with-
. in a sunspot umbra and supplied with energy from below,

1. INTRODUCTION

During the past few years special attention has
been devoted to the small bright structures in sun-
spot umbrae. The physical properties of these
formations still are not well established, but their
diameter is generally 100-200 km, their brightness
is comparable to that of the undisturbed photo-
sphere, and they persist for some tens of minutes
[1]. Their magnetic field appears to be consid-
erably weaker than in the umbra itself (according
to some estimates the difference may amount to
an order of magnitude [1-3]), and its sign is op-
posite to the sign of the main field of the sunspot.

By taking these irregularities into account
one can dispose of various difficulties with dis-
charge models for the sunspot umbra; in par-
ticular, one can explain the observed line inten-
sities for neutral and ionized elements, the varia-
tion in the average intensity of sunspots from the
center to the limb of the solar disk, and the strong
departures from hydrostatic equilibrium at the cen-
ter of a spot [4, 5]. At present the nature of these
structures remains unclear, They mightbe a mani-
festation of remnants of ordinary convection in the
sunspot umbra [6], or of oscillatory convection [7],
Presumably, in regions where the magnetic field
is weak, columns of photospheric material would
remain unchanged or little changed. On the other
hand, it is possible that these bright points might
represent isolated formations whose size is limited

in depth, as though they were suspended within the
umbra [8]. But problems then arise in explaining
the heating of the formations [8].

There are also special difficulties with at-
tempting to explain the bright structures as verti-
cal columns that acquire their energy from below.
A hot column of considerable vertical length ought
to heat the ambient medium by horizontal transfer
of radiation, leading to a blurring of its boundaries
and an increase in the effective diameter of the
cylinder. This effect would be less appreciable if
the surrounding umbra material were strongly dis-
charged and if its opacity were low. But another
difficulty arises in connection with the discharge
of umbra material: While observing at an angle
through the rarefied upper layers, one would look
through the hot lower layers of the photospheric
column, It should be recognized, however, that
horizontal energy transfer at the interface be-
tween the hot column and the ambient umbra mate-
rial would tend to produce a boundary layer of
diminished temperature. Since the column has a
substantially higher opacity than the ambient mate-
rial, this effect would result in a shielding of the
hot inner portion of the column,

In this investigation we have solved the prob-
lem of radiative transfer in a cylinder surrounded
by a medium whose temperature distribution may
be specified arbitrarily. The results will be ap-
plied for establishing the temperature distribution
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in a photospheric column embedded in cool umbra
material, assuming that heat transfer takes place
by radiation alone,

2. RADIATIVE HEAT TRANSFER
IN THE CYLINDER

In a steady state, if local thermodynamic equi-
librium prevails, the radiant-flux vector will be
solenoidal [9]:

divS = 0; (1)

here S denotes the flux integrated over all fréquen—
cies. In the diffusion approximation we have

S=———VB, (2
a

where « is the volume absorption coefficient aver-
aged over frequencies and B =c~1fIdQ is the ra-
diation density.

Equations (1) and (2) imply that

(o

In a homogeneous medium Eq. (3) reduces to La-
place's equation. We are to solve for Eq, (3) a bound-
ary-value problem in a cylinder of radius R, Let
us write Eq. (3) in the cylindrical coordinates r, z:

1 0 0B 4
= {r=—
r 3r( 0r)

023_0B6‘lna OB dlna
dz* or Or 9z oz

=0. (4)

In the dimensionless variables

H r
T=\a(z,0)dz, P =—
J R

Eq. (4) becomes

#*B dlna 4B 1 0B
_ +—— 4+ R*a(r,0)]*
ap* dp dp p dp [az0)]

i .
x{aB+[01na(r,O) _6lna]_¢’7’_B_}=Q (5)
at? ot ot ot

An application of Eddington's method leads to the
same equation (5) (see Buslavskii [10]), which es-
sentially corresponds to the diffusion approxima-
tion. At the top and bottom bases of the cylinder
we shall prescribe the usual boundary conditions

2 a0 0By _ o
(B+ 3 a(t,p) 3r) x=‘o_®’ )
' 2a(v,0) 9B\

(B_ 3a(r, P)TT) '=°'—O ' (7)

corresponding to an absence of radiation incident
on the cylinder from above, and a certain speci-
fied integral flux incident on the cylinder from be-
low,

On the side surface of the cylinder we shall
specify the behavior of the function B itself:

Blpgi = B‘, (8)

where B,(7) is some given function.
The variables in Eq. (5) may be separated if
we assume that « can be represented in the form

a(t, p) = a(t)B(p). . 9

With the substitution B(t, p) = T(1)Y(p), Eq.
(5) will then reduce to

2
Rza‘i€ + AT =0, 10
drt
&Y (1 dlnp\dy
—t [————= ) =2 Y =0. (11)
dp* (p do )dp 0

In order that we may integrate Eqs. (10) and
(11) in quadratures we should adopt some further
simple assumptions regarding the behavior of o (T)
and B(p). We shall henceforth suppose that

B = const, (92)

a=ar+a. (9b)

The linear relation (9b) corresponds approximate-
ly to a state of hydrostatic equilibrium.
In addition we shall assume that & = const.
Equation (5), with ¢ given by Eq. (9b) and with
the boundary conditions (6) and (7), will be satisfied
by the linear function

2/34""0—'(1:

=00, (12)
et ap—

B,

where ay,, ai represent the values of o at the bot-
tom and top bases of the cylinder.

Thus the solution of our original problem re-
duces to finding a function u = B — B; that satisfies
the same equation (5) with homogeneous boundary
conditions,

From Eq. (10), with boundary conditions homo-
geneous with respect to 7, we find the following
eigenvalues of the problem: '

- Ra ———
“"*?“‘W’ ”*='zl“+uf (k=1,2,...),13)

where the p | are defined by the conditions
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1 @, bo(b+1¢) _ O
—wln—=A . (14a) =ln—,
R TR e R, (20)
1 [+73 l,l.h(b'l't)
— paIn — = arc tg- -+ kn (14b) o by, (21)
2 o (b+1) (1—2)+ %_amtg'———‘b+1+m2’

(k=1,2,...).

Here b = 3ap,/a and t = 3uy/a. It is natural to sup-

pose that at/a « 1 (the mass density in the upper

layers of the cylinder is low), sothatt «< 1 and b =

37). Equation (14a) then implies that u, ~ 1 to with-

in terms of order @/a; to the same accuracy A, ~

0, and Eq. (14b) becomes
1

ay
—uIn—=
P 179 p arctg

3pato

TFoe o e + k. (14c)

The eigenfunctions have the form

a

Iy=1——;
o @ (152)

ks
Th=(i) Siﬂ(—%‘}l};lnﬁ""q}k), k=1,2,..-,
o @ (15b)

Ur

b+1°

@ = arctg (16)

The Bessel functions of imaginary argument,

Yo=I(ho), n=0,1,... |, an

will be solutions of Eq. (11) for g = const, satisfy-
ing the condition of boundedness along the axis,
Thus the solution of the problem will take the form

B=B,+co(1—-:—) L(op) + Y GTn(@) Lo(hap). (18)

k=1

The coefficients C, C may be evaluated by expand-
ing the function u,(a) = B,(a) — Bj (o) in series
with respect to the eigenfunctions T (x). Assum-
ing for simplicity that u (a) is linear,

‘u (o) = (fa+ 2)Be ,
we find, neglecting terms of order a;/a, that

Mr

Co= gB,, Vi+ pa?

Cu=4Be[(ab+—z—a)f+g]

1 §1n Pr

: L (9
To(As) yi+ sin (2¢,) — sin (ys + 2¢x)

where the ¢} are given by Eq. (16),

and Bg denotes the density of radiation emerging
from the undisturbed photosphere.

3. PHOTOSPHERIC COLUMN IN

SUNSPOT UMBRA

" We shall now apply the solution obtained in
Sec. 2 to the case of a photospheric column sur-
rounded by the cool, rarefied material of a sunspot
umbra. For this purpose we shall take & to be the
flux in the undisturbed photosphere at the same
(sufficiently great) optical depth T,; that is,

3
<I)=Be(2+—2—ro).  (22)
Such a flux would, in the one-dimensional case,
give a radiation density Bg at the surface, With
this value of & the linear term will become

3
Bl=(1 +—2f)35,. (12a)

Figure 1 illustrates the form of the isotherms
inside the photospheric column for the following
values of the parameters:

[+

R=100-km, a=15-10"* km™, =10%,
oz

7% =10, f=—100 km, g = —0.5.

This choice of f and g ensures constancy of tem-
perature on the side surface [B, = (1 + g)Bg]. The
values of the other parameters are approximately
the same as those in Michard's model photosphere
[11].

Knowing the temperature distribution inside
the column, we can estimate the brightness of the
column in various directions. Thus, the radiant
intensity on axis in the direction of the z axis will be

I,= j.Be" dx.
L]

A calculation shows that if g =" 0.5, then I, will con-
stitute about one half the radiant intensity of the
undisturbed photosphere, in rough agreement with
the results obtained by Beckers and Schréter [1];
with this value of g the radiant intensity of the
umbra will amount to 20% of the photospheric
value,
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4 condition (6) critical: In the region of physical
0.6 interest, T < 5, the same solution is obtained un-
e / \ der the more general condition
1.0 )
”/u\ (B+ik—a£) —® (0<k<1). (6a)
3 Ot /e
30
70 : In solving the problem we have assumed that
4.0k the absorption coefficient is a particular function
5 II\ of depth, The transfer problem essentially ought
50F — to be solved in conjunction with the equations of

! 4
1.9 0.9 g 29 14
Fig. 1. Form of isotherms inside the photospheric column as a
function of the optical depth r and the dimensionless distance
p from the axis of the cylinder [see Eq. (5)]. The curves are
labeled with the value of B/ BO‘

If the irregularity is observed at an angle to
its axis, its brightness will be considerably lower
than would be the case for a pure photospheric col-
umn because the temperature near the side of the
cylinder is substantially lower than on the axis,

Thus our model for a column of photospheric
material with energy supplied from below quali-
tatively represents the properties now known for
the bright formations in sunspot umbrae. But one
important question remains: To what extent is the
model itself consistent? Its weakest point is the
specification of the temperature on the side sur-
face. Instead of calculating the heatingoftherare-
fied material by the radiation of the hot column,
we have replaced that material by a thermostat in
which the column is embedded. Our results par-
tially justify this procedure: The temperature
falls off fairly rapidly in the dense boundary layers
of the column, while the surrounding rarefied mate-
rial is only weakly heated. Nevertheless, there is
an urgent need to solve the combined radiative-
transfer problem in a spot where the irregulari-
ties are taken into account.

The other assumptions we have made in solving-
the problem are not of such a fundamental charac-
ter and would not affect the result qualitatively. The
value T, =10 that we have adopted is of no essen-
tial importance. Generally speaking,the solution
does not depend on the value of T, throughout the
layer T < To/2. Nor is the form of the boundary

magnetohydrodynamics., The results obtained here
ought to be viewed as a first approximation. The
behavior of the isotherms could be determined
more accurately by taking the temperature depen-
dence of o into account. Qualitatively it is clear
that a decrease of o in the surface layers would
result in some brightening of the column.

The authors are grateful to V. V, Ivanov and
D. N, Nagirner for discussing the results.
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