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Abstract After analyzing the observational manifestations of the α- and ω-effects of the
dynamo theory and using the modified Waldmeier rule, we show that the annual mean Wolf
numbers at the maximum of the 11-year cycle that are likely to occur a time interval of 104

years have an upper limit amounting approximately to WEXTR ∼ 230 – 240. Similar values
were also obtained using the results by Usoskin et al. (2014, Astron. Astrophys. 562, L10),
who considered the probability of various activity levels by reconstructing the variations of
solar activity over three thousand years. As an additional result, the predicted maximum of
Cycle 24 is refined and is shown to be WM = 72 – 132 with a 95 % confidence.

1. Introduction

Routine observations of solar activity have been carried out since the 1820s. Individual
instrumental records are available since 1610 (the time when the telescopes came into use
for astronomical observations). There are also some proxy data that allow us to asses more
or less reliably the level of solar activity over the Current Era (Ogurtsov et al., 2002), in the
epoch of Holocene (Usoskin, 2013), and even over the past 40 000 years (Ogurtsov, 2010).

Fundamentally, the question is how typical the extreme solar activity values obtained
over a fairly short period of regular solar monitoring are and how much they might change
over longer time scales, e.g., 10 000 years.

Observations of solar-type stars of late spectral classes show that on the one hand, the en-
ergy released in flares can be much higher than observed in the Sun (Zeleny and Veselovsky,
2008). On the other hand, we do not know whether the specific effective parameters of a
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1286 Yu.A. Nagovitsyn et al.

given star (magnetic field, rotation, development of convection) strictly determine its energy
release limit.

The statistics of occurrence of grand minima and maxima of solar activity was studied by
Usoskin, Solanki, and Kovaltsov (2007). In this article, we investigate whether the solar ac-
tivity level can be arbitrarily high or if it has a certain upper limit. This is important because
extremely high solar activity can influence both space weather as a whole and its terrestrial
manifestations. In addition, this question is of fundamental interest to the dynamo theory.

This article provides evidence that the amplitude of the 11-year cycle of solar activity has
a certain upper limit. In addition, we discuss the probable amplitude of the current Cycle 24.

2. Dynamo Theory and the Upper Limit of the Cycle Amplitude

The recent theory of the generation and variation of the solar magnetic field-αω-dynamo is
based on the combined action of two processes. The ω-effect arising as a result of differen-
tial rotation of the Sun transforms the global poloidal magnetic configuration to a toroidal
one. The α-effect, in contrast, transforms toroidal fields into poloidal ones. This effect is
usually associated with small-scale cyclonic flows. There is also a particular type of the
α-effect due to the emergence of toroidal fields – the so-called Babcock–Leighton mecha-
nism. Olemskoy, Choudhuri, and Kitchatinov (2013) explained the existence of the global
activity minima and maxima by fluctuations of the α-effect. We consider both effects of the
dynamo theory using experimental data. As an index of the global toroidal field we took
the annual mean Wolf numbers, W , (http://sidc.oma.be/html/sunspot.html) and as an index
of the poloidal or (more precisely) large-scale field, the annual mean dipole–octupole A-
index (Tlatov and Makarov, 2005), which varies in antiphase with W (i.e., is highest at the
minimum of the cycle).

We consider the ω-effect first. For this purpose, we compare A(t) with W(t + �), i.e.,
with the sunspot activity delayed by � years. The delay time is chosen such that it en-
sures the best correlation between the indices for the form W(t + �) = bA(t). Figure 1a
illustrates the dependence plotted with the original A(t) values from Tlatov and Makarov
(2005), and Figure 1b shows the same dependence plotted with A(t) reconstructed since
1700 from Nagovitsyn et al. (2008). The dashed lines show the 95 % confidence intervals.
Their calculation for prediction purposes with the standard deviation, s, taken into account
is described in detail in Section 3.

The relations represented in Figures 1a and b obtained by the least-squares method are,
respectively,

W(t + �) = (0.872 ± 0.034)A(t), k = 0.799, sW = 28.9, (1)

W(t + �) = (0.839 ± 0.019)A(t), k = 0.820, sW = 24.2, (2)

where � = 6 years and sW is the standard deviation for the fitting curve. The correlation
coefficient k equal to about 0.8 corroborates the existence of the ω-effect. For the chosen
indices, it is linear; i.e., no significant nonlinearity was found.

Now, we turn to the α-effect. Compare W(t − �) and A(t), again, with the most appro-
priate delay time; Figure 1d for the values by Tlatov and Makarov (2005) and Figure 1e for
the values by Nagovitsyn et al. (2008). The statistical dependencies are

A(t) = (1.74 ± 0.11)W(t − �) − (6.20 ± 0.88) · 10−3W 2(t − �),

k = 0.738, sA = 29.7,
(3)
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Figure 1 (a), (b) and (c): The Wolf number, W , as a function of the dipole–octupole, A, index in the past
minimum. (a) Assuming a constant shift (�) as in Tlatov and Makarov (2005). (b) Idem (a) as in Nagovitsyn
et al. (2008). (c) Considering the best shift as in Nagovitsyn et al. (2008), (d), (e) and (f): the A-index in
function of W in the past maximum. (d) Assuming a constant � as in Tlatov and Makarov (2005). (e) Idem
(d) as in Nagovitsyn et al. (2008). (f) Considering the best shift as in Nagovitsyn et al. (2008). Continuous
lines emphasize regression curves, dashed curves correspond to 95 % confidence intervals.

A(t) = (1.734 ± 0.066)W(t − �) − (6.96 ± 0.58) · 10−3W 2(t − �),

k = 0.695, sA = 26.8,
(4)

where � = 5 years. As expected, the sum of the delay times for both effects is 11 years.
From now on, we recall that W(t − �) corresponds to the best forward shift with respect
to A(t), while W(t + �) corresponds to a backward shift. The shifts are different in each
case.
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It is important to note that the coefficients in Equations (1) – (2) and (3) – (4) are sta-
tistically compatible. This demonstrates the consistency of the reconstruction by Nagov-
itsyn et al. (2008) with experimental data. At the same time, since the number of points
for Equations (2) and (4) is almost three times greater than for Equations (1) and (3), we
use below the values of A from Nagovitsyn et al. (2008). Note that, although the corre-
lation for the α-effect is lower than for the ω-effect, it is, nevertheless, high enough; the
correlation coefficient is on the order of 0.7. The nonlinear character of the dependence
A(t) = cW(t − �) + dW 2(t − �) is clear as well, where c and d are some coefficients; the
reliability of the negative coefficients of the quadratic terms in Figures 1d and 1e is 7σ and
12σ , respectively. These may be regarded as the leading terms in the Taylor expansion of
the (unknown) nonlinear functional dependence of A on W(t − �). On the other hand, the
dependence W(t + �) vs. A(t) increases linearly.

We can write A(t) as a function of W(t − �) as

A(t) ± σA = [
cW(t − �) + dW 2(t − �)

] ±
√[

W(t − �)σc

]2 + [
W 2(t − �)σd

]2 + s2
A

and W(t + �) as a function of A(t) as

W(t + �) ± σW = bA(t) ±
√[

A(t)σb

]2 + [bσA]2 + s2
W .

This will yield

W(t + �) ± σW

= [
cbW(t − �) + dbW 2(t − �)

]

±
√

cW 2(t − �)σ 2
b + dW 4(t − �)σ 2

b + b2W 2(t − �)σ 2
c + b2W 4(t − �)σ 2

d + b2s2
A + s2

W ,

(5)

where σA,σW and σc, σd are the standard deviations of the functions A(t),W(t + �) and
the coefficients c, d . The probability of exceeding the upper limit of the Wolf numbers in
the Gaussian statistics is

P (W ≥ WM + zσW ) = 1 − ψ(z), ψ(z) =
√

2

π

∫ z

0
e− t2

2 dt, (6)

where ψ(z) is the probability integral.
We assume that a virtually improbable event (VIE) is an event whose statistical occur-

rence rate is lower than once every 10 000 years. Since in Equations (1) – (4) we consider
the annual values, the total number of the events in this case is N = 104. Obviously, for
VIE, 1 − ψ(z) = 1

N
= 10−4. From Equation (6) we find that z = 3.88. By substituting the

coefficients from Equations (2) and (4) to Equation (5), we plot W(t + �) + 3.88σW as a
function of W(t − �), the open circles in Figure 2. Finding the maximum, we obtain that a
VIE is W > 226. Rounding off, this yields in the case under consideration WEXTR = 230.

We have assumed in the previous calculations that the characteristic times of the α- and
ω-effects are constant and are equal to five and six years, respectively. In fact, this assump-
tion is too rigorous. It would be more convenient to consider the relations between the max-
ima of A(t) and W(t) in two successive activity cycles. For this purpose, the value of � is
defined as the time delay between three consecutive maximal values of the A(t) and W(t)

functions in their 11-year cycles. Obviously, the value of � will be different in each case.
Figures 1c and 1f represent the obtained dependencies expressed by the relations

W(t + �) = (1.014 ± 0.020)A(t), k = 0.88, sW = 17.7 (7)
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Figure 2 W(t + �) + 3.88σW

as a function of W(t − �)

assuming that the characteristic
times of the α- and ω-effects are
constant (open circles), and
W(t + �) + 3.26σW as a
function of W(t − �) assuming
the best deviations for � at
maximum A(t) and W(t) in the
successive cycles (dark circles).

and

A(t) = (1.731 ± 0.095)W(t − �) − (6.50 ± 0.75) · 10−3W(t − �)2,

k = 0.499, sA = 24.2.
(8)

The assumption of choosing the best deviations for � at maximum A(t) and W(t) in the
successive cycles increases the correlation coefficient for the ω-effect to 0.9, which indicates
that the assumption is justified. Substituting the coefficient from (7) and (8) to (5), we obtain
the curve that is shown in Figure 2 with filled circles. The total number of the considered
events (11-year cycles) in our case is N = 104

11 ≈ 909. Hence ψ(z) = N−1
N

≈ 0.9989 and
z = 3.26. Then, from Figure 2 it follows that WEXTR = 240.

3. Dynamo Theory and the Maximum Amplitude of the Cycle:
Alternative Representations of the α-Effect

In Figure 1f, we can see that the points are highly spread. Therefore, there are alternative
ways to represent A(t) vs. W(t −�). First, we consider the linear form. Using the maximum
values for three successive years as described above and applying the least-squares method,
we obtain

A(t) = (0.935 ± 0.037)W(t − �), k = 0.469, sA = 34.0. (9)

By choosing two independent series of normally distributed random values and normal-
izing them to sW , sA, we can, with the aid of Equations (7) and (9), numerically simulate
the variation of W over the time interval of 104 years. Figure 3a illustrates the desired vari-
ation of Wolf numbers for the linear dependence A(t) vs. W(t − �). The variation of W

is irregular with fluctuations on the order of the observed mean values. This behavior does
not resemble the experimental reconstruction for the Holocene epoch (Solanki et al., 2004).
Thus, the linear dependence should be rejected as improbable.

Note that a similar numerical simulation for the parabolic dependence shown by Equa-
tion (8) discussed in Section 2 indicates that W is really stable, i.e., it does not exceed a
certain level during 104 years (see Figure 3b). The highest value reached for this period was
WEXTR = 230. We consider other possible relations between A(t) and W(t − �) describing
the α-effect.

The α-effect may be determined by random fluctuations (Olemskoy, Choudhuri, and
Kitchatinov, 2013). We can obtain with observations

A(t) = 95.3 ± 29.2. (10)
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Figure 3 Numerical simulation
of the Wolf number time
variations using different
assumptions on A(t) vs.
W(t − �): (a) linear dependence
– Equation (9); (b) parabolic
dependence – Equation (8);
(c) random fluctuations of the
α-effect – Equation (10);
(d) power-law dependence –
Equation (11).

The numerical simulation for this case gives the curve represented in Figure 3c. In this
figure, the VIE limit is WEXTR = 200.

The final form alternative to Equation (8) that we considered is a power-law dependence
A(t) ∼ Wm(t − �), where 0 < m < 1. Selecting m by the least-squares method, we obtain

A(t) = (10.17 ± 0.55)W 0.35(t − �). (11)

The numerical simulations of Equations (7) and (11) yield the pattern shown in Figure 3d,
with the VIE limit being WEXTR = 230.

The four plots in Figure 3 were obtained using two similar series of normally distributed
random numbers, which facilitates comparing different dependencies A(t) vs. W(t − �).

The choice of the best dependence for the α-effect is not our aim. It is relevant that all
the dependencies considered above, except the linear one, show the limited nature of W .

The nonlinear, limited dependence A(W) for the α-effect ensures a stable periodicity
over large time scales, because if, for example, both dependencies were linear, the ampli-
tudes of the successive cycles would increase indefinitely as soon as A exceeds a certain
limiting value.

4. The Modified Waldmeier Rule and the Amplitude Limit of the Cycle

To begin with, we note that as shown in Nagovitsyn and Kuleshova (2012), the well-known
Waldmeier rule (Waldmeier, 1935), which originally relates the height of the maximum
of the 11-year cycle of solar activity, WM, to the duration of its ascending branch, can be
reformulated in terms of the solar activity growth rate after the preceding minimum. The
highest growth rate of the annual mean of the Wolf numbers, Ẇ , at the rise of the cycle is
closely related to WM: the correlation coefficient is k = 0.95 against k ∼ 0.83 for various
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Figure 4 Equation (12) as a
solid curve with the dashed
prediction intervals and the
observational annual means
calculated both by the standard
method from January to
December (filled squares) and
with a half-year shift from July to
June of the following year (open
squares).

modifications of the Waldmeier rule. The relationship between the maximum Ẇ and WM

was reported earlier in Dmitrieva, Kuzanyan, and Obridko (2000), but in this work, the au-
thors used the smoothed monthly mean values and a linear (contrary to Nagovitsyn and
Kuleshova, 2012) relation with nonzero WM at Ẇ = 0. A high correlation coefficient k al-
lowed us to formulate in Nagovitsyn and Kuleshova (2012) a new prediction method and
to estimate the height of maximum of Cycle 24 following an unusually long minimum
(Obridko, Nagovitsyn, and Georgieva, 2012). It was determined that this cycle would have
a medium height, the annual mean WM value amounting to 104 ± 12 if the forecast proves
correct.

Nagovitsyn and Kuleshova (2012) used the annual mean Wolf numbers, Wi , and Ẇ was
estimated as �W = Wi − Wi−1. The annual mean values were calculated by a standard
method from the monthly means from January to December of the given year. Two years
have passed since the article was published, and the maximum of the cycle is now closer.
Therefore, we re-evaluate our conclusions.

The annual means need not necessarily be calculated in a standard way over a calendar
year. We can use, for example, the values from July to June of the following year, i.e., shift
our calculations by half a year. This is what we did. As an approximation, we used a second-
degree polynomial without the free term since, obviously, WM = 0 (cycle minimum) if the
maximum Ẇ = 0.

Figure 4 illustrates the relation WM = f (�W) plotted with the annual means calculated
both by the standard method (filled squares) and with a half-year shift (open squares). In the
second case, the correlation is somewhat lower, but it still remains very high, k = 0.93. The
r.m.s. dependence determined from all points in the figure can be written as follows:

WM = (3.23 ± 0.12)�W − (1.52 ± 0.18) · 10−2�W 2, σ = 14. (12)

Substituting in this equation the maximum value of �W in the rising phase of Cycle 24,
which equals 39.2, we obtain the expected cycle maximum WM = 102 ± 14 in agreement
with Nagovitsyn and Kuleshova (2012).

Note that here as well as in Section 3, the negative sign before the quadratic term in Equa-
tion (11) means that the function is limited from above and cannot be arbitrary large. Since
we are dealing with an extrapolation problem, the results obtained must be verified using
the so-called prediction interval equal to the square root of the sum of the squared values of
the confidence interval and the standard deviation of the experimental points from the fitting
curve. Quantile 2 multiplied by this quantity yields an estimate at a 95 % confidence level.

The predicted amplitude of Cycle 24 obtained by this method is P (72 < WM < 132) =
0.95. Since the forecasting for Cycle 24 is difficult because of its unusual behavior (Obridko,
Nagovitsyn, and Georgieva, 2012), the real value will, probably, be close to the lower limit.
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The value of �W , at which W in Equation (12) is maximum, is �W = 106.3. This is
higher than all values recorded for the entire history of Wolf number observations (26 cy-
cles). The really observed maximum �W = 103.7. In this case, we can therefore only
roughly estimate WEXTR. The number of events with �W > 103.7 recorded during the ob-
servation interval under consideration was no more than one per 27 cycles. If we assume
this interval to be statistically significant, then the number of such events for 909 cycles
(104 years) will be no more than 909/27 ≈ 34. Hence, ψ(z) = N−1

N
= 33/34 = 0.9706, i.e.,

z = 2.18. Then from Equation (12), we can estimate WEXTR at �W > 103.7:

WEXTR = 3.23�W − 0.0152�W 2 + 2.18
√

(0.12�W)2 + (
0.00018�W 2

)2 + 142.

From the values obtained, we chose the maximum, which is WEXTR = 240. Note again
that since this value is reached for a �W that was never observed, the estimate obtained
here is approximate.

5. Solar Activity During the Past Three Millenia and the Amplitude
Limits of the Cycle

We estimate the probability of an extremely high solar activity discussed above by consid-
ering its variations over a long time interval. For this purpose, we used the reconstruction by
Usoskin et al. (2014) based on the latest carbon cycle data, generation of 14C, and variations
in the geomagnetic dipole moment. The reconstruction covers a time interval of 3000 years.

First of all, note that the conclusion of two modes of solar activity corresponding to high
and low activity made by Usoskin et al. (2014) agrees with the conclusion of Nagovitsyn,
Pevtsov, and Livingston (2012) that large and small sunspots, whose populations form a
bimodal distribution, are generated by different dynamo mechanisms.

Furthermore, Usoskin et al. (2014) provided the experimental probability density func-
tion for different values of solar activity found in the reconstruction (taking into account the
uncertainties of the original models), as well as its approximation by two Gaussian curves.
In this article, the approximation is used to estimate the probability of extremely high values
of solar activity.

Usoskin et al. (2014) used in their reconstruction the Hoyt and Schatten (1998) Group
Sunspot Numbers (G), while we are using the Wolf Sunspot Numbers (W). Although
many authors do not separate these indices, we compared their annual mean values over
a relatively trustworthy time interval from 1826 (the beginning of regular observations by
Schwabe) to 1995 (the end of the Hoyt and Schatten G series). We obtain

W = (1.057 ± 0.010)G, k = 0.979, s = 8.8,

which implies at 5.7σ that the indices under discussion are different.
The reconstruction by Usoskin et al. (2014) deals with 10-year means (G10). We compare

these values with the maximal decadal (GM) in the period 1700 – 1995. We obtain

GM = (2.065 ± 0.056)G10, k = 0.958, s = 14.5.

This correlation is shown in Figure 5. In Usoskin et al. (2014) the probability density func-
tion (PDF) is plotted in the form of two normal distributions that represent the high and
low G10 values. By digitizing the graph from Usoskin et al. (2014), we obtain for the
former the mean G10 = 44.4 with a standard deviation σG10 = 11.8. By reducing the G10

scale to the Wolf number scale following statistical rules, we obtain for this distribution
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Figure 5 The group sunspot
numbers: 10-year means, G10,
and their comparison with the
maximal decadal, GM, in the
period 1700 – 1995 – the filled
circles and the linear regression
fit – the continuous curve.

W = 97.0 ± 31.4, as above. It follows from the PDF plot in Usoskin et al. (2014) that high
values account for 0.79 of the total PDF area, which corresponds to 790 decades. Using the
same line of reasoning as above, we obtain ψ(z) = N−1

N
= 789/790 = 0.9987, z = 3.22.

Hence, the VIE upper limit in this case is W > 198. This estimate is somewhat lower than
obtained in this article, but it should be noted that the PDF in Usoskin et al. (2014) in-
volves negative G10! If this implies that the general level of activity in the reconstruction is
underestimated (by ∼10 units if judged from the distribution), then WEXTR = 220.

6. Results and Conclusions

Considering the observed manifestations of the α- and ω-effects of the dynamo theory and
using the modified Waldmeier rule, we have shown that the limiting value of the annual
mean Wolf number at the maximum of the 11-year cycle that are likely to occur in the
time interval 104 years does exist and is WEXTR ∼ 230 – 240. We have considered a possible
limitation of the solar activity level using various assumptions. The low value WEXTR = 200
corresponds to the hypothesis of random fluctuations of the α-effect. When considering the
probability of high levels of solar activity by using a reconstruction of its variations over a
time interval of 3000 years, we also obtained WEXTR = 200; however, we remark that this
value could be higher (WEXTR = 220). Finally, a limiting value of WEXTR ∼ 230 – 240, as
the most probable one, is the main result of our work. Since in this article we discussed the
upper limit of the activity cycle amplitude, we recall, to avoid misunderstandings, that we
used the annual mean sunspot numbers. The smoothed monthly means can be 10 % higher
(if they are not smoothed, they can be higher by 30 %).

The important feature of the processes under consideration is their nonlinearity. In the
development of the cycle, the nonlinearity of the α-effect limits the amplitude of the cycle
of the large-scale (polar) magnetic field from above, and during the emergence of a new flux,
the (highest) rate of the emergence is related nonlinearly to the amplitude of the developing
cycle.

An additional result of our work is the confirmation of our earlier forecast (Nagovitsyn
and Kuleshova, 2012) of the Wolf number value at the maximum of Cycle 24. Taking into
account the confidence interval of the approximating curve and the standard deviation, it
is WM = 72 – 132 with a 95 % reliability level, which is close to the estimates obtained by
other authors (Petrovay, 2010; Kilcik et al., 2009; Obridko and Shelting, 2009; Ozheredov,
Breus, and Obridko, 2012). Note that the recent data for the first ten months of 2014 allow
us to estimate the annual mean value for the secondary maximum of Cycle 24, which is
expected not to exceed 80.
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